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Abstract - Adjoint functions have been used with forward functions to compute gradients in implicit (iterative) 

solution methods for inverse problems in optical tomography, geoscience, thermal science, and other fields, but only 

once has this approach been used for inverse solutions to the Boltzmann transport equation. In this paper, this 

approach is used to develop an inverse method that requires only angle-independent flux measurements, rather than 

angle-dependent measurements as was done previously. The method is applied to a simplified form of the transport 

equation that does not include scattering. The resulting procedure uses measured values of gamma-ray fluxes of 

discrete, characteristic energies to determine interface locations in a multilayer shield. The method was 

implemented with a Newton-Raphson optimization algorithm, and it worked very well in numerical one- 

dimensional spherical test cases. A more sophisticated optimization method would better exploit the potential of the 

inverse method. 
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INTRODUCTION 

The most widely used approach to solving inverse problems of all kinds, in many different fields, is the implicit 

or iterative one, in which the direct problem is solved repeatedly, with different values of the unknown model 

parameters. One common method of updating the unknown model parameters in each iteration is based on 

computing the gradient of some error functional with respect to the unknown parameters. The gradient information 

is then used in one of a multitude of methods (conjugate gradient, steepest descent, etc.) to minimize the error 

functional. 

For many problems, calculating these gradients directly with a finite-difference scheme is extremely expensive, 

requiring many function evaluations with very small changes of system parameters. The question of how small of a 

change to make in each parameter for an accurate gradient calculation must also be answered. At the very least, one 

extra forward calculation is required for each unknown parameter. 

In many different fields, this difficulty has been avoided by employing adjoint functions. In optical tomography 

[e.g., Ref. (l)], ut#oint or automatic diflerentiution has been used to compute gradients of cost or error functionals 

with respect to system parameters directly from the computer code used in the forward modeling. In thermal science 

[e.g., Ref. (2)] and geoscience [e.g., Ref. (3)] applications, explicit equations have been derived and solved for the 

adjoint functions, which have then been used to compute the required gradients. [Reference (1) discusses the 

relationship between the two approaches. J 
applied automatic differentiation to the neutral-particle transport problem. Only slightly later, Norton(s) 

used the adjoint angular flux for calculating the gradient of an error hctional in general inverse neutral-particle 

transport problems (as opposed to the specialized problems of optical tomography). Norton’s method requires some 

measurement of the angular flux distribution exiting the unknown sample and is therefore of limited use when only 

angle-integrated measurements are available. 

In this paper, another method for radiation transport inverse problems is derived. The method is similar to that 

of Nortod5), but its derivation assumes that detectors provide only the angle-independent flux (i.e., the scalar flux or 

total leakage). 

Given a set of observed gamma-ray fluxes of specific, discrete energies characteristic of the source isotopes, the 

inverse problem considered is the determination of interface locations in a multilayer sourcehhield system. The 

method has been implemented with a Newton-Raphson iteration scheme in one-dimensional spherical geometry, and 

numerical results are presented. 

THE METHOD 

Consider a system that includes some source of gamma rays surrounded by some shield. Both the source and 

the shield may be multilayered but, for simplicity, only homogeneous layers are considered. The source emits 

gamma rays at discrete energies, which can be resolved quite well using a high-purity germanium detector. Thus we 
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consider only the transport of photons of discrete energies and assume that any scattered photons lose energy and are 

removed. The source is also assumed to be isotropic. Under these conditions, the angular flux of photons of the 

discrete energy (or fine) denoted by index g is given by 

h. i iwg( ( r ,h)+CI : ( r )wg(r ,h)  =qg(r),  g = 1, ..., G, (1) 

where w g  (r,h) is the angular flux of gamma rays of energy g, position r, and angle h ; Cf (r) is the total cross 

section at energy g and position r; qg(r)  is the source (y/cm3.s), at position r, of gamma rays of energy g; and G is 

the number of discrete energies considered. It should be stressed that there is no coupling among the energy 

"groups" in Eq. (1). Also useful is the equation for the adjoint flux, w*"(r,h), 

-h. i iw*g(r ,h)  + ~ f ( r ) y * g ( r , h )  = q'g(r,h), (2) 

where the adjoint source is to be defined. For the present purpose, vacuum boundary conditions are imposed. [It is 

understood that Eq. (2) and each subsequent equation represents G equations.] 

Suppose the flux for each energy line g is measured at a detector external to the source/shield system. The 

quantity of interest is 

M g  = IdV fhC:(r,h)yP(r,h), (3) 

where the detector response function z;(r,h) is zero outside the detector volume. We define the detector response 

function as 
L A  

X;(r,n) =na6,,6(r-rd), (4) 

where 6, is the outward unit normal vector at point r on the surface r = r, , so that the detector measurement M g  

becomes the system leakage. 

Now let the symbol vf(r,h) represent the actual, as opposed to the calculated, angular flux. The measured 

leakage, M," , is 

M," = I d ~ j & ~ ~ ( r , h ) y f ( r , h ) .  ( 5 )  

We define the following functional to represent the difference between the actual system and the calculated 

model: 

(6) 
1 
2 

Eg = -(ME -M$ 

A variation in the parameters of the model (Zf  and qg are perturbed to Cf + Scf and qg + &f ) results in a 

variation in the calculated model angular flux ( w g  is perturbed to w g  + 6 w g )  that results in a variation in the 

calculated leakage ( M g  is perturbed to Mg + 6 M g  ) that results in a variation in the error functional [ h m  Eq. (6), 

ignoring second-order terms] 

6 E g  = ( M g  - M,")6Mg. (7) 

The variation in the leakage is 
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SMg = jdV IdfiC:6yK. (8) 

Ignoring second-order terms, the variation in Eq. (1) is 

ir - G ~ y g ( r , A )  + ~ f ( r ) ~ y g ( r , i r )  = &g(r) - s~f(r )yg(r , i r ) .  (9) 

Following Norton"), the goal is to remove the variation in the flux, Syg , h m  Eq. (8). To accomplish this, let 

the adjoint source be the detector response function, so that Eq. (2) reads 

-ir.Gy'g(r,A)+ Zf(r)y'"(r,A) = Zp;(r,ir). (10) 

SMg = JdV (hg - &fyg). (1 1) 

Using Eq. (10) in Eq. (8) and then using Eq. (9) yields 

Using Q. (1 l), Eq. (7) becomes 

Scg = kjVV,cg(r)cEf - J d Y V , ~ g ( r ) & g ,  (12) 

where, following Norton, we define 

V , P ( r )  E -(Mg -M,")jdhy*gyg (13) 

V,cg(r) - ( ~ g  -~f)jdhy*g. (14) 

and 

The quantities V,cg and V,cg  are the functional gradients (Frdchet derivatives) of the error, s g ,  computed with 

respect to the total cross section and gamma-ray source, respectively, for each line. 

APPLICATION OF THE METHOD TO FIND UNKNOWN INTERFACE LOCATIONS 

Suppose that the material composition and order of all the layers in the system are known but the interface 

locations between layers are ~nknown'~'. This situation is depicted in Figure 1 for r3, the interface between layers 3 

and 4. The material cross section in the neighborhood of an interface r, is 

Cf (4 = qp + H ( r  - rn )Ptn+l - qn 1 9  (15) 

where H(r  - rn) is the Heaviside step function. The derivative of Cf ( r )  with respect to the interface location is 

where S(r - rn ) is the Dirac delta function and AZji, is defined as 

m?n E 'tn - ' ? n + l *  

The total cross section variation (for line g) due to variations in the interface locations is 

where N is the number of unknown interface locations. 
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Similarly, the total gamma-ray source variation (for line g) due to variations in the interface locations is 

where A& isdefinedas 

4: = 4: - d+,* (20) 

Using Eqs. (18) and (19) in Eq. (12), the total variation in the error d due to interface location variations is 
N 

S.P = c[v,&~(~JAz:~ - VqEg(rn)Aq;bn. 
n=l 

N 
Since 6~~ = (a&g/arn hn , it is evident that”’ 

n=1 

a & g  - = V,Eg(rn)AZEn - Vqeg(rn)Aq:. 
arn 

A G x Nmatrix of the 

reconstruct the vector of unknown interface locations, 1 E {ti,. . . ,rN) . 

values (Le., the Jacobian matrix; call it E: ) can be constructed and used to - - 

IMPLEMENTATION 

The inverse method of this paper has been implemented for symmetric spherical geometries in which the 

innermost material is the gamma-ray source. Spherical geometries make for good one-dimensional test problems 

because (for a finite source) it is not only the shell thicknesses that matter, but the shell locations as well. 

The forward and adjoint angular fluxes for each line are computed using the discrete-ordinates code 

PARTISN”’. Appropriate total cross sections for discrete photon energies are constructed using the continuous- 

energy photon cross section library MCPLIBO2, used by the Monte Carlo code MCNP(*). A separate FORTRAN 

code was written to read the PARTISN output files and compute the necessary integrals. A Unix shell script 

controls the iterations. 

A simple Newton-Raphson iteration scheme(9’ was implemented to take advantage of the calculated derivatives. 

The Newton-Raphson formula for finding N unknown radii from G measured lines is, in the notation of this paper, 

E;& = = ‘E,  (23) 

where E: is the G x N Jacobian matrix, values, and & is the N x 1 vector of updates 

to make to the unlanown radii at the end of the iteration. This simple scheme was chosen for convenience; finding 

one that works “the best” is the subject of current research. 

is the G x 1 vector of - - 

The Jacobian E: of Eq. (23) is inverted using singular value decomposition (SVD)(9’. The application of SVD 

to this type of problem is discussed in Ref. (6). Suffice it to say here that SVD handles singular matrices gracefully, 

- - 



such that it is frequently advantageous to force an ill-conditioned Jacobian to be singular by raising the preset SVD 

threshold. 

TEST CASES 

Two test problems for unknown interface locations were run using a spherical Godiva model as a passive (non- 

fission) gamma ray source. The Godiva model was composed of 94.73% ='U and 5.27% z38U (by weight) and had a 

mass density of 18.74 g/cm3 and a radius of 8.741 cm. For these test problems [as in Ref. (6)], Godiva was placed in 

a spherical lead and aluminum shield. The lead layer had an inner radius of 12.4 cm and a thickness of 0.5 cm; the 

aluminum layer had an inner radius of 12.9 cm and a thickness of 0.3 cm. The lead and aluminum were modeled as 

pure elements with densities 1 1.4 and 2.7 g/cm3, respectively. 

The one-group forward and adjoint calculations used S3* gamma-ray transport in one-dimensional spherical 

geometry. The detector was modeled as a spherical surface with a radius of 100 cm. "Measured" detector responses 

were calculated for the actual system using the same angle and geometry discretizations. Convergence was declared 

when the leakage for all lines was within 0.1% of the leakage calculated for the actual model. 

Table I gives the results for both test problems. 

Case 1: Source radius known 

In case 1, the source radius was known but the lead layer was 0.2 cm too thin, the aluminum layer was 2.1 cm 

too thick, and the shield was 0.1 cm too close to the source (see Table I). The method converged, but only when the 

Jacobian E: of Eq. (23) was allowed to be singular by raising the SVD threshold. Different values of the threshold 

resulted in different iteration histories. The method converged in 16 iterations to the solution shown in Table I when 

the threshold was raised to 2 x lo4. When the Jacobian was not singular, the method calculated negative radii in the 

zeroth iteration and could not continue. A different optimization algorithm will allow an automatic solution to this 

problem. 

P 

Case 2: All radii unknown 

In case 2, the source radius was 0.341 cm too small, the shield was 0.4 cm too far away from the source, the 

lead layer was 0.1 cm too thin, and the aluminum layer was 0.7 cm too thick. The method converged to the solution 

shown in Table I in 20 iterations. This is a very promising result, as this problem is quite difficult solve(6). 

This problem also highlights the need for a more efficient optimization algorithm than Newton-Raphson. The 

models do not improve monotonically. After great improvements through iteration 8, during which the Jacobian 

matrix is singular (the SVD threshold was 1 x 

improve suddenly after an iteration in which the Jacobian is not singular, and the pattern repeats. 

the models diverge when the Jacobian matrix is singular, then 
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SUMMARY AND CONCLUSIONS 

An adjoint-based method of computing the gradient of an error functional has been applied to develop an 
iterative inverse method for radiation transport. The method is closely related to previous methods in the thermal 

and geological sciences and to a previous method in radiation transport due to Norton. Unlike Norton’s method, 

however, the present method does not require angle-dependent flux measurements. 

The iterative inverse transport method has been applied to develop a solution method for the problem of 

determining interface locations in a multilayer source/shield system. The method is based on precise measurements 

of the gamma flux at discrete energies characteristic of the source. Application of the method to solve for other 

unknowns is conceivable. 

The method has been implemented in one-dimensional (spherical) geometry with Newton-Raphson 

optimization. Very good results have been obtained for test problems with unknown interface locations. In 

addition, the method is much more efficient than a direct finite-difference approach. Problems with four unknown 

parameters can be solved with two transport calculations per iteration (one forward and one adjoint), rather than at 

least five (one extra forward calculation per unknown). 
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Table I. Results for Unknown Interface Test Problems 
Outer Radii (cm)" . .  

Descriptor Model Godiva Void Lead Aluminum 

Case 1 Initial 8.7420 12.3 12.6 15.0 

Case 2 Initial 8.4 12.8 13.2 14.2 

Actual Model 8.7410 12.400 12.9000 13.2000 

Converged 8.7410 12.4072 12.9073 13.2078 

Converged 8.7421 12.4299 12.9301 13.2328 
"Italics represent quantities that are known. 
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0 
Detector 

Figure 1. Depiction of source problem when the 

source and shield compositions are known but one 

interface location is not. 


